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The kinetic inductance effect

The DC case:
Cooper pairs carry charge without scattering.
Internal E fields are canceled.

The AC case:
Cooper pairs have momentum.
Acceleration leads to a phase shift between | and V.
This acts like an inductance!

At low temperature:
To 1% order, Ly is constant.

To 2™ order, Ly varies linearly with the number of pairs.

Phase shift leads to E field inside the conductor:
Non-zero resistance from quasiparticle currents
R also varies linearly with number of pairs




The kinetic inductance detector: photon absorption
breaks Cooper pairs, causes a frequency shift in a

microwave resonator.
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Direct-absorbing lumped-element KID (LeKID): inter-
digitated capacitor and meandered inductor
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Resonator-bolometer or thermal KID (tKID):

measure thermal pair-breaking
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STARFIRE: the Spectroscopic Terahertz Airborne
Receiver for Far-InfraRed Exploration

Baloon, based on BLAST gondola
[FU grating spectrometer

240 to 420 micron
Direct-absorber KID detectors
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Galaxy Evolution Probe KIDs

* 50,000 KIDs split evenly between imager and spectrometer
* Why baseline KIDs?
> Simple architecture, simple cryogenic readout, one focal plane
technology for all wavelengths.
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Day, LeDuc, Fyhrie, Glenn,

Perido, Zmuidzinas

Technology development plan: MIR KIDs (10 — 100 um),
readout



SuperSpec: an on-chip, R=300 spectrometer covering
the 1 mm atmospheric band
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Optical MKIDs projects

Mazin (UCSB) group, with FNAL collaborators:

ARCONS:
2 kpixel demonstration

DARKNESS:
800-1400nm energy resolving camera for
speckle-photometry planet hunting

MEC:
R~10 IFU for Subaru

Future instruments: KRAKENS, Picture-C ' + ol '\’
I -:i :

More details on optical projects at the end of the talk.
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KIDs as single photon detectors

71 = (resonator BW) ™1

~ 107° s typically

7o =QP recombination time

~ 10™*s typically

time



Ultimate resolving powers and Fano factors

In Silicon, the energy gap is around 1.1 eV - an optical photon
generates a few guasiparticles.

In a 1K superconductor, the gap is 3e-4 eV — an optical photon
generates hundreds of gps.

How well can you measure the energy?

Naive approach: N/v/N ~ 1000

Less naive approach: 2.35 \/Fw/E ~ 200

Even less naive approach: today, 16. Eventually, 50.



A complete system:

CASPER-ROACH
open-source
FPGA board

v [ Low noise cryogenic
amplifiers

M @/

Weinreb SiGe Cryo Amps ~ Miteq .001-500 MHz

Sub-K fridge with
microwave coax
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Readout: Today, $10/pixel with off-the-shelf hardware
— $1/pixel with custom boards and large orders




Multiplexing density / yield trade off

MUX density dominated by resonator collisions

Higher Q, better uniformity — more channels
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Fundamental sensitivity limits

NEP2 == "’///’/éackground limit for all detectoré\‘

(photon Poisson) 2+ (photon Bose) 2

—I—(l”eCOHlbiIlatiOIl noise)zv * Al pair breaking detectors.
. For ground based CMB case:
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Application #1: low resolution spectroscopy for

Throughput
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Application #2: time resolved astronomy

Crab Pulsar, 30 seconds at airmass 2.5 in ~2.5 arcsecond seeing
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Optical enhancement of the Crab Nebula.
ARCONS MKID camera
Mazin Group, 2011




Application #3: speckle techniques
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Instantaneous speckles

Images: Olivier Lai (CFHT)
& Boccaletti+ 2000




Application #5: order sorting following high-

resolution dispersive spectroscopy
e Grating disperses incident light into diffraction orders
* A Cross disperser separates orders spatially

* CCD imager

The Light Path of the High-Resolution Echelle Spectrograph

2b. Collimator 3. Echelle Grating

)

Collimator =

........
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5. Correction Lenses

7. Field Fiattener S
8. CCD (hidden behind field flatiener in this view)

HIRES at Keck Telescope - http://www?2 .keck.hawaii.edu/inst/hires http://www.vikdhillon.staff.shef.ac.uk/teaching/ph
y217/instruments/phy217_inst_echelle.html

Slide from Sumedh Mahashabde Oxford KIDSbec collab



MKIDs for Spectroscopy

® MKIDs can sort echelle
orders

® No read or dark noise even
into the near-IR (think faint!)

® No cross disperser
® Compact, high throughput
® Long linear arrays of
MKIDs are pretty easy

B 5x2karrays now @ 20 pum x
2 mm pitch

Preliminary Testbench Layout

B 60 x 8k eventually

® R~3k - 5k testbed
® 50 - 100 k eventually

® Data Hungry (LSST-MSE):
® ~23TB/fiber@S/N 30
® 175PB night

Next few slides from the J. Bailey, UCSB



Hafnium MKIDs: moving from R~10 to R~50

* We are now testing MKIDs from Hafnium (Hf) with
T~450 mK, 7 = 80 us, and parametric amplifiers
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